
Sonic Arts Today, Vol.10 No.1 pp.28–33

Research report

Leveraging domain-specific languages in an interactive score system

Jean-Michaël CELERIER
Université de Bordeaux - SCRIME - LaBRI - Blue Yeti

Abstract

Interactive scores have been introduced as a way to
author open works which includes elements affecting
the course of a performance such as conditions and in-
teraction points. However, while the temporal control
& specification aspect has been greatly detailed in the
litterature, few work has been done in the ways in
which the score can actually produce music or other
multimedia behaviours such as lights and visual con-
trol ; the standard approach is to leverage external
software through the means of network protocols such
as OSC. We present here a case study of the inte-
gration of various Domain-Specific Languages (DSLs)
and more general language paradigms with different
specificities such as dataflow, functional and impera-
tive, directly in the execution loop of the Ossia Score
interactive score system, and their application to the
authoring and real-time performance of rich audio-
visual content.

1. Introduction

Time is an integral part of most multimedia processes
and work, but authoring in the time domain is still
an unsolved question when interactivity is involved.
That is, how to model multimedia applications where
the time is not fixed by an author before performance
and execution, but depends on interactive actions of
the application users.

We present a model and an implementation for the
authoring of interactive multimedia applications based
on the theory of interactive scores. In particular, this
model is used to bind various DSLs together to create
sonic and multimedia arts.

A starting point for interactive scores research is
the interactive scores model proposed by Desainte-
Catherine and Allombert in [3]. Parts of it are succes-
sors to the research done in the Jamoma project[10,
11, 12], as well as part of the French research projects
Virage [1] and OSSIA 1 .

We choose to rely on multiple DSLs for reasons
exposed on broader computer science literature: using
such languages for specific tasks has generally been

1 http://ossia.gmea.net/

recognized as efficient in comparison to using a single,
general-purpose programming environment[6].

2. Interactive scores

In interactive scores, the author deliberately allows
for multiple variations of a given part of the score, for
instance at the note level where onsets and durations
can vary, or at the scope of greater musical phrases
; this can be likened to the musical concepts of ossia
and fermata. The three central questions relative to
interactive scores are: “How does one write an inter-
active score”, “How are such scores performed”, and
“How can such scores be checked for inconsistencies”.
The majority of existing literature on the subject cov-
ers the two last points: we instead cover the two first
ones, and in particular the question of authoring. The
proposed authoring methods leverage various specific
environments combined together in a single software:
each environment should be used for the tasks it is
specialized for in order to simplify authoring.

2.1. Interactivity

Interactivity in music, and more generally in arts has
been covered by Umberto Eco in [5]: a central differ-
ence between recent open works and previous forms
of art is that these works actively encourage the per-
former to act not only on individual parameters, but
on the structure of the work itself. A way to enable
this is to enumerate the possible cases that the per-
former will encounter, and let him choose amongst
them. In [4], the question of interactivity in the con-
text of artistic performance in the digital age is ad-
dressed: the author states that interactivity is not a
“feature” that a performance may have, but instead a
discrete spectrum in which the user interaction with
the work is involved. The scripting of interactive
pieces can be extended towards full audio-visual expe-
riences, in the case of artistic installations, exhibitions
and experimental video games.

3. The Score system

The model is twofold: a graph defines the execution of
musical processes in time, and another defines the data

– 28–

http://ossia.gmea.net/

Sonic Arts Today, Vol.10 No.1 pp.28–33

relationships and dependencies between the processes
that will be used during a given tick of execution. In
the graphical environment, the author manipulates
a restricted version of both graphs which automates
the creation of objects; nodes of the data graph are
enabled when they start executing and disabled the
rest of the time.

For instance, it is possible to apply a distortion to
a sound for ten seconds, then, if a condition becomes
true in the score, apply a reverberation on top of the
distortion. An example of temporal graph is given in
fig. 1 ; a screen-shot of the graphical environment is
given in fig. 2.

Audio processing in the score engine is sample-
accurate: it is possible to loop sounds perfectly, and
to have precise positioning of objects in time.

The system, implemented in the Ossia Score soft-
ware 2 integrates to a high level with the OSC, MIDI,
and other relevant protocols, thanks to the libossia li-
brary 3 . In particular, every port of every object can
be assigned an OSC address ; the port will either read
or write values from this address. This also allows pro-
cessing to work if not all nodes of a signal chain are
active: they can fetch the relevant data from either
local variables in an environment or global variables
which correspond to the OSC addresses known to the
system.

4. Temporal combining of relevant DSLs

The goal of this work is to assess the relevance of
multiple DSLs for the sake of creating interactive
multimedia scores. The first part of this work was to
research embeddable environments which would be
amenable to scoring in time. The following section
describes the chosen DSLs.

4.1. Capacity of DSLs

Multiple features are desirable from the environments
we wish to integrate with :

• Introspectability: it must be possible from C++
code to discover the parameters provided by a
program in a given environment. This is to al-
low the creation of matching ports and controls
in the host environment. We distinguish three
possibilities: the environment does not support
any kind of reflection, the environment allows to
reflect its inputs and outputs, and the environ-
ment allows to reflect its inputs and outputs and
associate semantic meaning to it: for instance,
is the output meant to represent a VU-meter, a
slider, etc. This third level enables automatic
user interface generation.

2 http://www.ossia.io
3 http://ossia.github.io

Direction of the flow of time

Trigger

State

Condition

Time Sync (TC)

Temporal interval

A

B

C

D

E

F

H

G

Figure 1. Part of a scenario, showcasing the temporal
syntax used. A full horizontal line means that the time
must not be interrupted, while a dashed horizontal line
means that the time of the interval can be interrupted
to continue to the next part of the score according to
an external event. Execution occurs as follows: the
interval A runs for a fixed duration. When it ends, an
interval is evaluated: if it is false, the branch which
contains B will not run. Else, after some time, the
flow of time in B reaches a flexible area centered on
an interaction point, also called a temporal condition.
If an interaction happens, B stops and D starts. If
there is none, D starts when the max bound of B is
reached by the flow of time in B. Just like after A,
an instantaneous condition will make G execute or
not execute. In all cases, C started executing after A.
C expects an interaction, without time-outs. If the
interaction happens, the two instantaneous conditions
which follow C are evaluated : the truth value of each
will decide of the execution of E and F .

• Dynamicity: can a program in the DSL easily be
reloaded and change at run-time. This enables
live-coding[7] features.

• Latency and performance: is the language suit-
able enough for real-time execution and perfor-
mance, at very small periods – typically, less
than two milliseconds.

• Threading and multi-instance support: can the
environment be embedded multiple times in a
host software without interference between in-
stances, and without problems if these multiple
instances are called from different threads. This
enables better performance at run-time.

• Relevancy: is the language famous enough that
it is possible to find composers or programmers
able to write programs for it easily, which is
especially relevant in the context of a musical
studio which does the software realisation of

– 29–

http://www.ossia.io
http://ossia.github.io

Sonic Arts Today, Vol.10 No.1 pp.28–33

Figure 2. An example of scenario in the software. For
a few seconds, an automation loops. The automation
values are sent to a mapping function, which sends
the resulting messages through OSC. Then, a sound
plays. At some point, if an external event happens or
after a few additional seconds, the sound goes through
an effect built using the Faust programming language.

compositional works.

4.2. Faust

[8] is a functional programming language tailored for
signal processing, able to produce efficient DSP code
in a variety of environments. An example of Faust
code is given in fig. 3

import(” stdfaust . l ib ”) ;

phasor(f) = f/ma.SR : (+ ,1.0:fmod) ~ _ ;
osc (f) = phasor(f) * 6.28318530718 : sin ;
process = osc(hsl ider (” freq ” , 440, 20 , 20000, 1))

* hslider (” level ” , 0 , 0 , 1 , 0.01);

Figure 3. Example Faust program : a sine generator
with a frequency and a volume control. Courtesy of
the Faust website (http://faust.grame.fr/examples/
2015/09/30/oscillator.html)

Faust in particular is able to handle sample-accurate
controls: it is possible to execute for any given number
of samples, which allows to set precise automation
values. It also provides some level of semantic informa-
tion : min, max, default bounds and steps for various
UI controls.

import QtQuick 2.0
import Score 1.0
Item {

FloatSlider { id : in1 ; min: 20; max: 20000 }
AudioOutlet { id : out1 }

property int idx : 0;
function onTick(oldtime , time , position , o f f set)
{

var arr = [] ;
var n = time - oldtime ;
var freq = in1.value ;
i f (n > 0) {
var mult = 2 * Math.PI * freq / 44100;
for (var s = 0; s < n; s++) {

var sample = Math.sin(mult * idx++);
sample = sample > 0 ? 1 : -1;
sample = freq > 0 ? sample : 0;
arr [o f f set + s] = 0.3 * sample ;

}
}
out1.setChannel (0 , arr) ;
out1.setChannel (1 , arr) ;

}
}

Figure 4. A sine generator written with the QML
integration in the environment.

4.3. JavaScript and QML

It is sometimes more interesting to script using tra-
ditional, imperative or object-oriented programming:
many scientific algorithms are for instance given un-
der a form tailored for implementation in this kind of
language. To enable this, we provide the integration
of the Qt QML engine in the environment. QML is a
superset language of Javascript.

An example Javascript script is provided in fig. 4.
The script is a QML object. It contains child objects
which will map to inputs and outputs in the system:
in the example, FloatSlider and AudioOutlet. Available
types are :

• Value inlets and outlets, able to send traditional
data types such as integer, boolean, floating
point number, string.

• Midi inlets and outlets.

• Audio inlets and outlets.

• In addition, specific types of inlets can be used
for a given value kind: for instance, FloatSlider is
a value inlet specialized for float types ; it will
show a relevant UI widget in the user interface.
Other available types are Enum (shows a list
of choices), IntSlider, TextField, Toggle which all
map to relevant value types. These objects are
provided from our environment directly: more
can be added if needed by composers.

4.4. PureData

PureData (Pd)[13] has been embeddable for a few
years in host applications thanks to the work done in

– 30–

http://faust.grame.fr/examples/2015/09/30/oscillator.html
http://faust.grame.fr/examples/2015/09/30/oscillator.html

Sonic Arts Today, Vol.10 No.1 pp.28–33

Figure 5. An example of score linking a Javascript
script and a Pd patch temporally. Both scripts loop
in time for a duration of a few seconds. The Javascript
script gets its inputs from external OSC messages.
It writes data to its output buffers ; when the Pd
patch starts, it gets the values that were buffered at
the beginning of the JS script, in a FIFO way.

libpd[2].
It is a prime target for our work: many composers

are knowledgeable of patcher environments such as
Pd and Max/MSP and as such can be easily leveraged
for integration. In addition, recent work by Puckette
et al. has made possible the use of multiple distinct
instances of Pd in a single process which enables to
have different sub-patches integrated in a score patch.

However, integration of Pd leads to a problem: it
enforces a block size of 64 samples. That is, Pd will
only write to its outputs every 64 audio samples. This
means that sample accuracy cannot be assured with
Pd: the system has to be buffered at this point.

The libpd implementation also does not provide re-
flection information. To enable some external control
support, we scan the Pd patch save file for messages
sent and received: [r $0-mymessage], [s $0-mymessage], [midiin],
[midiout], [adc~], [dac~] are used to create input and out-
put ports in the environment.

4.5. GLSL

GLSL (GL Shading Language) is a shader language,
used for generating graphics on GPUs. It can be used
in the environment through a specific process, which
will open a render window. In particular, we use
the Interactive Shader Format 4 extension to specify
inputs and outputs of the shader ; the format use a
JSON-based header to specify metadata relevant to
the shader which is then parsed by the environment.

In particular, this extension specifies a standard
method for passing audio data to shaders in order to
create interactive audio visualisations.

4.6. ExprTK

ExprTK[9] is a mathematic expression language, which
follows standard mathematical conventions: for in-
stance the expression cos(2*x) + 1 has the expected be-
haviour. The main utility of ExprTK for this project
is allowing to do arithmetical computations with less
overhead than a whole Javascript environment.

ExprTK is currently integrated as a set of four
processes in the environment:

• A value generator.

• A value mapper.

• An audio generator.

• An audio filter.

In every process, t gives the current time in samples,
dt gives the time in samples since the last tick, and pos

gives the time relative to the parent object. x is the
input value for mapping processes. In addition, three
float variables a, b, c controllable through sliders in
[0; 1] are provided by default to enable some controls
; more complex set-ups would be better served by the
full-blown Javascript interpreter.

For instance, consider the expression a + x * cos(t / 1000)

in the value mapper. Given the score of fig.6, and the
external Pd patch of fig.7 we get the output of fig.8,
split in three parts: the first one corresponds to the
value of the automation mapped through the expres-
sion, the second one corresponds to the output of the
OSC message /value and the third one correponds to
the mapping of a low-frequency oscillator object. The
mapping object itself writes its output to the OSC
addres /output, which is then displayed in a Pd array.

5. DSL integration process

We present here the process used to integrate a new
DSL in the system. The software consists of two part:
the use interface, written in C++ with the Qt library,
is based on a plug-in system: new plug-ins can be

4 www.interactiveshaderformat.com

– 31–

www.interactiveshaderformat.com

Sonic Arts Today, Vol.10 No.1 pp.28–33

Figure 6. A score example with a simple math expres-
sion mapper. The process at the top left is an automa-
tion, the process at the top right is a low-frequency
oscillator producing square waves.

Figure 7. An external Pd patch which communicates
with the score of fig.6. Objects of the libossia library
are used to simplify network communication: they
can be enumerated automatically over the network.

Figure 8. The array of the Pd patch in fig.7. The first
slow-moving part corresponds to the automation, the
second, noise-like, to the random values sent from Pd,
and the third part, periodic, to the LFO object.

provided, which allow for custom UI, and specific
behaviour at execution. The execution engine itself is
part of the pure C++ library libossia: it can be easily
leveraged from other graphical environments and is
not tied to the main user interface.

The Abstract Factory design pattern is used ; ob-
jects are split in various part which each handle an
aspect of the plug-in.

The method is as follows:

• Inherit from Process::ProcessModel to provide a model
implementation. This class is the model on
which the edition action applies, and contains
the data that will be saved to disk. It should
create ports according to the inputs and outputs
detected from the current DSL script ; these
ports will be automatically displayed in the UI.
Special control ports can be created, which will
show sliders in the user interface.

• Inherit from ossia::graph_node to provide an im-
plementation of the execution object: the main
function:
void graph_node : : run(

ossia : : token_request ,
ossia : : execution_state&);

will be called at each tick with the number of
samples and the other informations mentioned
earlier: token_request is a simple structure which
contains current date, current position, offset
since the beginning of the current audio buffer ;
execution_state allows to fetch data from network
protocols. In addition, the ports of the node
can of course be accessed at this point ; this is
the preferred way to interact with external en-
vironments through either OSC, MIDI or other
protocols.

• Inherit from Engine::Execution::ExecutionComponent to
provide an implementation of the conversion
between the UI model and the execution en-
gine object. This class is where the reactive
editing abilities will be implemented: in partic-
ular, if a parameter or property of the model
changes during run-time, it should be updated
in the execution engine. Messages are passed to
the execution engine through function objects
in a lock-free queue and executed at the end
of an execution tick from the main execution
thread. For instance, this allows hot reloading of
scripts during execution while preserving atom-
icity if multiple actions have to be performed,
in contrast with a more traditional lock-based
approach which would damage performance.

• If the user interface needs special handling, for
instance because a text field has to be displayed,
one must reimplement Process::LayerPresenter which

– 32–

Sonic Arts Today, Vol.10 No.1 pp.28–33

handles the user interaction and propagates
changes from the model to the view, Process::LayerView.

6. Conclusion

We presented a set of languages introduced in the
interactive score environment Ossia Score. These lan-
guages cover various parts of the interactive instal-
lation and media creative pipeline: some are more
tailored towards graphics, other towards audio, and
other towards mathematical computations. These en-
vironments are rendered compatible together through
standard software engineering processes ; the speci-
ficity of the environment is that it allows these various
languages to be scored in time.

6.1. Future works

All the presented languages currently use run-time
interpretation. While this is enough for many musical
uses, a further goal would be to improve performance
by using languages that are able to be compiled into
efficient assembly code at run-time: this is nowadays
doable with C++ code and the LLVM environment,
for instance, and would reduce latency further. In
particular, some environments such as Javascript may
allocate memory : this is undesirable in any thread
related to audio processing.

In addition, usability studies should now be per-
formed to assess the performance of given tasks for
composers with various DSLs of equivalent abilities:
for instance, would more composers manage to write
their pieces with Javascript scripts, Pd patches or a
mix of both for their computations ?

7. Bibliography

References
[1] Pascal Baltazar et al. “Virage: Une réflexion

pluridisciplinaire autour du temps dans la créa-
tion numérique”. In: (2009).

[2] Peter Brinkmann et al. “Embedding pure data
with libpd”. In: Proceedings of the Pure Data
Convention. Vol. 291. 2011.

[3] Myriam Desainte-Catherine and Antoine Al-
lombert. “Interactive scores: A model for spec-
ifying temporal relations between interactive
and static events”. In: Journal of New Music
Research 34.4 (2005), pp. 361–374.

[4] Steve Dixon. Digital performance: a history of
new media in theater, dance, performance art,
and installation. MIT press, 2007.

[5] Umberto Eco. “The Open Work”. In: Trans.
Anna Cancogini. Cambridge: Harvard Univer-
sity Press (1989).

[6] Paul Hudak. “Domain-specific languages”. In:
Handbook of Programming Languages 3.39-60
(1997), p. 21.

[7] Thor Magnusson. “Algorithms as scores: Coding
live music”. In: Leonardo Music Journal (2011),
pp. 19–23.

[8] Yann Orlarey, Dominique Fober, and Stéphane
Letz. “Faust: an efficient functional approach
to DSP programming”. In: New Computational
Paradigms for Computer Music 290 (2009).

[9] Arash Partow. The C++ Mathematical Expres-
sion Toolkit Library (ExprTk). 2000. url: https:
//github.com/ArashPartow/exprtk.

[10] Timothy A Place and Trond Lossius. “Jamoma:
A Modular Standard for Structuring Patches in
Max.” In: ICMC. 2006.

[11] Timothy Place, Trond Lossius, and Nils Peters.
“A Flexible And Dynamic C++ Framework And
Library For Digital Audio Signal Processing.”
In: International Computer Music Conference.
2010.

[12] Timothy Place, Trond Lossius, and Nils Pe-
ters. “The jamoma audio graph layer”. In: In-
ternational Conference on Digital Audio Effects
(DAFx-10). 2010.

[13] Miller Puckette et al. “Pure Data: another inte-
grated computer music environment”. In: Pro-
ceedings of the second intercollege computer
music concerts (1996), pp. 37–41.

8. Author’s Profile

Jean-Michaël CELERIER is a french ph.d student, en-
rolled at the Université de Bordeaux under the direc-
tion of Myriam Desainte-Catherine. He is employed
by the multimedia art company Blue Yeti for the de-
velopment of the sequencer Score, and a member of
the SCRIME (Studio de Création et Recherche en In-
formatique et Musique Électro-Acoustiques : Creation
and Research Studio in Computer Science and Elec-
troacoustic Music).

This work is licensed under the Creative Com-
mons Attribution-NonCommercial-NoDerivatives
4.0 International License. To view a copy of this li-

cense, visit http://creativecommons.org/licenses/by-nc-nd/4.0/
or send a letter to Creative Commons, PO Box 1866, Mountain
View, CA 94042, USA.

– 33–

https://github.com/ArashPartow/exprtk
https://github.com/ArashPartow/exprtk
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 Introduction
	 Interactive scores
	 Interactivity

	 The Score system
	 Temporal combining of relevant DSLs
	 Capacity of DSLs
	 Faust
	 JavaScript and QML
	 PureData
	 GLSL
	 ExprTK

	 DSL integration process
	 Conclusion
	 Future works

	 Bibliography
	 Author's Profile

